HOME > Faculties
Tao Wang(王涛)

Professor

Email: taowang@sioc.ac.cn

Research intereston-surface synthesis 


2024 – 至今    中国科学院上海有机化学研究所,研究员

2019 – 2024  西班牙Donostia International Physics Center博士后,欧盟玛丽·居里学者合作导师:Prof. Dimas G. de Oteyza

2014 –  2019   中国科学技术大学 国家同步辐射实验室,博士,导师:朱俊发教授

2010 –  2014   中国科学技术大学 核科学与技术学院,学士

 

2024 – present    Shanghai Institute of Organic Chemistry, CAS,  Professor

2019 – 2024       Marie Skłodowska-Curie postdoctoral fellow in Donostia International Physics CenterCollaborative supervisor: Prof. Dimas G. de Oteyza

2014 – 2019      Ph.D. in National Synchrotron Radiation Laboratory, University of Science and Technology of China (USTC); Major: Nuclear Science and Technology;Supervisor: Prof. Junfa Zhu

2010 – 2014     Bachelor in School of Nuclear Science and Technology, University of Science and Technology of China (USTC); Major: Nuclear Engineering and Technology


借助扫描隧道显微镜STM等表面科学技术,表面合成化学近年来迅猛发展,一些利用传统方法无法获得的低维碳基纳米结构得到了精确制备。通过对前驱体分子的合理设计、热力学动力学调控、自旋态保护、针尖操纵等方法,一些具有奇异自旋和拓扑性质的碳结构也有望通过表面合成的方法得到原子级精准制备和表征。此外,将STM与制备级质谱、同步辐射技术等多种手段联用,也有望实现溶液反应机理研究的突破,在单原子尺度实现反应中间体精确解构,从而明晰反应机理。围绕上述设想,基于表面化学和溶液化学的深度融合,团队研究主要围绕以下两个方面展开:

1)自旋拓扑碳结构的合成与表征。利用表面合成化学的手段,借助扫描隧道显微镜/显微谱、非接触式原子力显微镜和高分辨同步辐射谱学技术,进行低维自旋碳结构的原子级精准构筑和相应自旋态、拓扑态的单分子尺度表征和解析,并探索其在电子器件中的应用。

2)有机反应中间体表征。发展质谱分离-STM-同步辐射谱学-针尖增强拉曼多维度表征系统,将溶液反应中复杂中间体利用软着陆的方法沉积到样品靶面上,通过STM对其结构进行亚原子尺度成像,通过STM针尖与同步辐射耦合对其元素和价态进行单原子尺度辨认,通过针尖增强拉曼对其官能团进行埃级分辨识别,从而明确中间体结构,明晰有机反应机理。

Recent advancements in surface science technologies, such as scanning tunneling microscopy (STM), have significantly accelerated the development of surface synthetic chemistry. This progress has enabled the precise fabrication of low-dimensional carbon-based nanostructures that are unattainable through traditional methodologies. By employing rational design of precursor molecules, thermodynamic and kinetic regulation, spin state protection, and tip manipulation, researchers can anticipate the precise preparation and characterization of carbon nanostructures exhibiting unique spin and topological properties at the atomic level via on-surface synthesis.

 

Moreover, integrating STM with preparative mass spectrometry and synchrotron radiation technology is expected to enhance the investigation of solution reaction mechanisms, facilitating the accurate dissection of reaction intermediates at the single-atom scale and thereby elucidating the underlying reaction mechanisms.

 

In light of these concepts and the synergistic integration of surface and solution chemistry, the research team is concentrating on the following two primary avenues:

 

1. **Synthesis and Characterization of Spin Topological Carbon Structures**: Utilizing surface synthetic chemistry, scanning tunneling microscopy/spectroscopy, non-contact atomic force microscopy, and high-resolution synchrotron radiation spectroscopy, our study aims to achieve atomic-level precision in the construction of low-dimensional spin carbon structures and to characterize the corresponding spin states and topological states at the single-molecule scale.

 

2. **Characterization of Organic Reaction Intermediates**: We will develop a mass spectrometry separation-STM-synchrotron radiation spectroscopy-tip enhanced Raman multi-dimensional characterization system for the characterization of organic reaction intermediates at single-molecule level.  The complex reaction intermediates are deposited from solution reactions onto surfaces via soft landing. Their structures will be imaged at the subatomic scale using STM, while element identification and valence state assessment will be conducted at the single-atom level through the coupling of the STM tip with synchrotron radiation. Functional group identification at the angstrom level will be achieved through tip enhanced Raman spectroscopy. This system allows for the clarification of structures of intermediates thereby elucidating the mechanisms of organic reactions.


1. Wang, T.; Zhu, J.* Confined On-Surface Organic Synthesis: Strategies and Mechanisms. Surf. Sci. Rep. 2019, 74, 97-140. (long review)

2. Wang, T.#; Lv, H.#; Huang, J.#; Shan, H.; Feng, Lin.; Mao, Y.; Wang, J.; Zhang, W.; Han, D.; Xu, Q.; Du, P.; Zhao, A.*; Wu, X.*; Tait, S.; Zhu, J.* Reaction Selectivity of Homochiral versus Heterochiral Intermolecular Reactions of Prochiral Terminal Alkynes on Surfaces. Nat. Commun. 2019, 10, 4122. 

3. Wang, T.; Huang, J.; Lv, H.; Fan, Q.; Feng, L.; Tao, Z.; Ju, H.; Wu, X.; Tait, S.; Zhu, J.* Kinetic Strategies for the Formation of Graphyne Nanowires via Sonogashira Coupling on Ag(111). J. Am. Chem. Soc. 2018, 140, 13421-13428.

4. Wang, T.#*; Berdonces-Layunta, A.#; Friedrich, N.; Vilas-Varela, M.; Calupitan, J. P.*; Pascual, J. I.; Pena, D.; Casanova, D.; Corso, M.; de Oteyza, D. G.* Aza-Triangulene: On-Surface Synthesis and Electronic and Magnetic Properties. J. Am. Chem. Soc. 2022, 44, 4522-4529.

5. Wang, T. #; Angulo-Portugal, P.#; Berdonces-Layunta, A.; Jancarik, A*; Gourdon, A.; Holec, J.; Kumar, M.; Soler, D.; Jelinek, P.; Casanova, D.; Corso, M.; de Oteyza, D. G.*; Calupitan, J. P.* Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs. J. Am. Chem. Soc. 2023, 145, 10333-10341.

6. Zeng, Z.; Guo, D.; Wang, T.*; Chen, Q.; Matej, A.; Huang, J.; Han, D.; Xu, Q.; Zhao, A.; Jelinek, P.; de Oteyza, D. G.; McEwen, J. S.*; Zhu, J.* Chemisorption-Induced Formation of Biphenylene Dimer on Ag(111). J. Am. Chem. Soc. 2022, 144, 723-732.

7. Wang, T. #*; Sanz, S.#; Castro-Esteban, J.; Lawrence, J.; Berdonces-Layunta, A.; Mohammed, M. S. G.; Vilas-Varela, M.; Corso, M.; Pena, D.*; Frederiksen, T.*; de Oteyza, D. G.* Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. Nano Lett. 2022, 22, 164-171.

8. Calupitan, J. P.*; Berdonces-Layunta, A.; Aguilar-Galindo, F.; Vilas-Varela, M.; Pe?a, D.; Casanova, D.; Corso, M.; de Oteyza, D. G.*; Wang, T.* Emergence of π-Magnetism in Fused Aza-triangulene: Symmetry and Charge Transfer Effects. Nano Lett. 2023, 23, 9832–9840.

9. Wang, T.; Lv, H.; Fan, Q.; Feng, L.; Wu, X.*; Zhu, J.* Highly Selective Synthesis of Cis-Enediynes on a Ag(111) Surface. Angew. Chem. Int. Ed. 2017, 56, 4762-4766.

10. Qin, T.; Guo, D.*; Xiong, J.; Li, X.; Hu, L.; Yang, W.; Chen, Z.; Wu, Y.; Ding, H.; Hu, J.; Xu Q.; Wang, T.*; Zhu, J.* Synthesis of a Porous [14]Annulene Graphene Nanoribbon and a Porous [30]Annulene Graphene Nanosheet on Metal Surfaces. Angew. Chem. Int. Ed. 2023, 62, e202306368.

11. Huang, J.; Pan, Y.; Wang, T.*; Cui, S.; Feng, L.; Han, D.; Zhang, W.; Zeng, Z.; Li, X.; Du, P.; Wu, X.*; Zhu, J.* Topology Selectivity in On-Surface Dehydrogenative Coupling Reaction: Dendritic Structure versus Porous Graphene Nanoribbon. ACS Nano 2021, 15, 4617-4626.

12. Feng, Lin.#; Wang, T.#; Tao, Z.; Huang, J.; Li, G.; Xu, Q.; Zhu, J.* Supramolecular Tessellations at Surfaces by Vertex Design. ACS Nano 2019, 13, 10603-10611. 

13. Lawrence, J.; Berdonces-Layunta, A.; Edalatmanesh, S.; Castro-Esteban, J.; Wang, T.; Martín, A. J.; de la Torre, B.; Castrillo-Bodero, R.; Angulo, P.; Mohammed, M. S. G.; Vilas-Varela, M.; Schiller, F.; Corso, M.; Jelinek, P.*; Pe?a, D.*; de Oteyza, D. G.* Circumventing the Stability Problems of Graphene Nanoribbon Zigzag Edges. Nat. Chem. 2022, 14, 1451-1458.

14. Wang, T.#; Pan, Y. #; Zhang, W. #; Lawrence, J.; Mohammed, S. G. M.; Huang, J.; Feng, Lin.; Berdonces-Layunta, A.; Han, D.; Xu, Q.; Wu, X.*; Tait, S.; Oteyza, D. G.*; Zhu, J.* On-Surface Synthesis of a Five-Membered Carbon Ring from a Terminal Alkynyl Bromide: a [4+1] Annulation. J. Phys. Chem. Lett. 2020, 11, 5902-5907. 

15. Wang, T.; Fan, Q.*; Zhu, J.* Steering On-Surface Reactions by Kinetic and Thermodynamic Strategies. J. Phys. Chem. Lett. 2023, 14, 2251-2262.

16. Calupitan, J. P. #; Wang, T. #; Paz, A. P.*; álvarez, B.; Berdonces-Layunta, A.; Angulo-Portugal, P.; Castrillo-Bodero, R.; Schiller, F.; Pe?a, D.; Corso, M.; Pérez, D.*; de Oteyza, D. G.* Room-Temperature C–C σ-Bond Activation of Biphenylene Derivatives on Cu(111). J. Phys. Chem. Lett. 2023, 14, 947-953.

17. Qin, T.; Wang, T. *; Zhu, J.* Recent progress in on-surface synthesis of nanoporous graphene materials. Commun. Chem. 2024, 7, 154.

18. Wang, T.#; Lv, H.#; Tao, Z.; Huang, J.; Fan, Q.; Wu, X.*; Zhu, J.* Unravelling the Mechanism of Glaser Coupling Reaction on Ag(111) and Cu(111) Surfaces: a Case for Halogen Substituted Terminal Alkyne. J. Phys. Chem. C 2018, 122, 14537-14545.

19. Han, D.; Tao, Z.; Wang, T.*; Feng, L.; Li, X.; Zeng, Z.; Zhu, J.*, Sequential Activation of Aromatic C─H Bonds on Cu(111). J. Phys. Chem. C 2022, 126, 5541-5549.

20. Wang, T.*; Lawrence, J.; Sumi, N.; Robles, R.; Castro-Esteban, J.; Rey, D.; Mohammed, M. S. G.; Berdonces-Layunta, A.; Lorente, N.; Perez, D.; Pena, D.*; Corso, M.*; de Oteyza, D. G. Challenges in the Synthesis of Corannulene-Based Non-Planar Nanographenes on Au(111) Surfaces. Phys. Chem. Chem. Phys. 2021, 23, 10845-10851.

21. Wang, T.; Fan, Q.; Feng, L.; Tao, Z.; Huang, J.; Ju, H.; Xu, Q.; Hu, S.; Zhu, J.* Chiral Kagome Lattices from On-Surface Synthesized Molecules. ChemPhysChem 2017, 18, 3329-3333.

22. Tao, Z.#; Wang, T.#; Wu, D.#; Feng, L.; Huang, J.; Wu, X.*; Zhu, J.* Construction of Molecular Regular Tessellations on a Cu(111) Surface. Chem. Commun. 2018, 54, 7010-7013.

23. Zhang, W. #; Wang, T.#; Han, D.; Huang, J.; Feng, L.; Ding, H.; Hu, J.; Zeng, Z.; Xu, Q.; Zhu, J.* Stepwise Synthesis of N?Ag?N and C?Ag?C Organometallic Structures on a Ag(111) Surface. J. Phys. Chem. C 2020, 124, 16415-16422.

24. Qin, T.; Liang, B.; Hu, L.; Xu, Q.; Wang, T.;* Zhu, J.* On-Surface Synthesis of Two-dimensional Carbon-based Networks via Hierarchical Ullmann Coupling Reactions. ChemPhysChem DOI: 10.1002/cphc.202400601

25. Zeng, Z.; Huang, J.; Han, D.; Li, X.; Xu, Q.; Wang, T.*; Zhu. J.* Substrate-Directed Chiral Selectivity of Molecular Self-Assembled and Covalent Structures. Surf. Sci. 2023, 733, 122306. 


2024   国际表面合成会议OSS24杰出博后奖

2021   欧盟玛丽·居里研究学者基金

2021   中国科学院优秀博士学位论文

2020   西班牙政府 Juan de la Cierva 博士后奖学金

2018   中国科学技术大学博士研究生国家奖学金

2017   中国科学院院长奖

 

2024   Outstanding postdoc prize in international conference OSS24

2021   European Union Marie Sk?odowska-Curie fellowship 

2021   Excellent PhD thesis of Chinese Academy of Sciences

2020   Spanish Juan de la Cieva postdoctoral fellowship

2018   Chinese National Scholarship for PhD Graduate Student

2017   The President Award of Chinese Academy of Sciences


  • Copyright  ©  2021-   深圳大学分子尺度实验室  All Rights Reserved.
    地址:广东省深圳市南山区南海大道3688号深圳大学粤海校区实验楼P113  
  • 网站地图
Visitors